Abstract

We associate with each compact set X of Rn two real-valued functions cX and hX defined on R+ which provide two measures of how much the set X fails to be convex at a given scale. First, we show that, when P is a finite point set, an upper bound on cP(t) entails that the Rips complex of P at scale r collapses to the Cech complex of P at scale r for some suitable values of the parameters t and r. Second, we prove that, when P samples a compact set X, an upper bound on hX over some interval guarantees a topologically correct reconstruction of the shape X either with a Cech complex of P or with a Rips complex of P. Regarding the reconstruction with Cech complexes, our work compares well with previous approaches when X is a smooth set and surprisingly enough, even improves constants when X has a positive μ-reach. Most importantly, our work shows that Rips complexes can also be used to provide topologically correct reconstruction of shapes. This may be of some computational interest in high dimensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.