Abstract
We present VidedWhisfer, a novel approach for unsupervised video representation learning, in which video sequence is treated as a self-supervision entity based on the observation that the sequence encodes video temporal dynamics (e.g., object movement and event evolution). Specifically, for each video sequence, we use a pre-learned visual dictionary to generate a sequence of high-level semantics, dubbed “whisper”, which encodes both visual contents at the frame level and visual dynamics at the sequence level. VidedWhisfer is driven by a novel “sequence-to-whisper” learning strategy. Naturally, an end-to-end sequence-to-sequence learning model using RNN is modeled and trained to predict the whisper sequence. We propose two ways to generate video representation from the model. Through extensive experiments we demonstrate that video representation learned by VidedWhisfer is effective to boost fundamental video-related applications such as video retrieval and classification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.