Abstract

The perinatal period remains a time of significant risk of death or disability. Increasing evidence suggests that this depends on microcirculatory behavior. Sidestream dark‐field orthogonal polarized light videomicroscopy (OPS) has emerged as a useful assessment of adult microcirculation but the values derived are not delineated for the newborn. We aimed to define these parameters in well term newborn infants. Demographic details were collected prospectively on 42 healthy term neonates (n = 20 females, n = 22 males). OPS videomicroscopy (Microscan) was used to view ear conch skin microcirculation at 6, 24, and 72 h of age. Stored video was analyzed by a masked observer using proprietary software. There were no significant differences between the sexes for any structural parameters at any time point. There was a significant increase over time in small vessel perfusion in female infants only (P = 0.009). A number of 6‐ and 72‐h measurements were significantly correlated, but differed from the 24‐h values. These observations confirm the utility of the ear conch for neonatal microvascular videomicroscopy. They provide a baseline for studies into the use of OPS videomicroscopy in infants. The changes observed are comparable with previous studies of term infants using these and other microvascular techniques. It is recommended that studies for examining the mature neonatal microvascular structure be delayed until 72 h of life, but studies of the physiology of cardiovascular transition should include the 24‐h time point after delivery.

Highlights

  • The perinatal period remains a time of significant risk of death or disability

  • Expectant mothers were recruited into the “Cardiovascular Adaptation of the Newborn Study 2 (2CANS)” after informed consent following presentation to the antenatal clinic of the John Hunter Hospital, Newcastle, Australia and included if their pregnancy proceeded to term

  • There were too few SGA infants to analyze separately and their results were within the ranges described in the tables. These observations of the term well newborn provide baseline measures for studies into the use of sidestream dark-field orthogonal polarized light videomicroscopy (OPS) videomicroscopy in infants from pathological pregnancies or in premature infants. They confirm the practical utility of the ear conch as an appropriate investigation site for microcirculatory videomicroscopy of the newborn

Read more

Summary

Introduction

It is the major contributor to infant mortality with 10% of infants likely to die when born too early (Parry et al 2003). This is even more pronounced (Ngoc et al 2006). Illness around this time is associated with significant long-term morbidity with the associated increase in health care costs (Doyle 2004). Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.