Abstract

This chapter presents a general gait representation framework for video-based human motion estimation that involves gait modeling at both the whole and part levels. Our goal is to estimate the kinematics of an unknown gait from image sequences taken by a single camera. This approach involves two generative models, called the kinematic gait generative model (KGGM) and the visual gait generative model (VGGM), which represent the kinematics and appearances of a gait by a few latent variables, respectively. Particularly, the concept of gait manifold is proposed to capture the gait variability among different individuals by which KGGM and VGGM can be integrated together for gait estimation, so that a new gait with unknown kinematics can be inferred from gait appearances via KGGM and VGGM. A key issue in generating a gait manifold is the definition of the distance function that reflects the dissimilarity between two individual gaits. Specifically, we investigate and compare three distance functions each of which leads to a specific gait manifold. Moreover, we extend our gait modeling framework from the whole level to the part level by decomposing a gait into two parts, an upper-body gait and a lower-body gait, each of which is associated with a specific gait manifold for part level gait modeling. Also, a two-stage inference algorithm is employed for whole-part gait estimation. The proposed algorithms were trained on the CMU Mocap data and tested on the HumanEva data, and the experiment results show promising results compared with the state-of-the-art algorithms with similar experimental settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.