Abstract

We propose a new video vectorization approach for converting videos in the raster format to vector representation with the benefits of resolution independence and compact storage. Through classifying extracted curves in each video frame into salient ones and non-salient ones, we introduce a novel bipartite diffusion curves (BDCs) representation in order to preserve both important image features such as sharp boundaries and regions with smooth color variation. This bipartite representation allows us to propagate non-salient curves across frames such that the propagation, in conjunction with geometry optimization and color optimization of salient curves, ensures the preservation of fine details within each frame and across different frames, and meanwhile, achieves good spatial-temporal coherence. Thorough experiments on a variety of videos show that our method is capable of converting videos to the vector representation with low reconstruction errors, low computational cost, and fine details, demonstrating our superior performance over the state of the art. We also show that, when used for video upsampling, our method produces results comparable to video super-resolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.