Abstract
The European honey bee, Apis mellifera L., is an economically and agriculturally important pollinator that generates billions of dollars annually. Honey bee colony numbers have been declining in the United States and many European countries since 1947. A number of factors play a role in this decline, including the unintentional exposure of honey bees to pesticides. The development of new methods and regulations are warranted to reduce pesticide exposures to these pollinators. One approach is the use of repellent chemistries that deter honey bees from a recently pesticide-treated crop. Here, we describe a protocol to discern the deterrence of honey bees exposed to select repellent chemistries. Honey bee foragers are collected and starved overnight in an incubator 15 h prior to testing. Individual honey bees are placed into Petri dishes that have either a sugar-agarose cube (control treatment) or sugar-agarose-compound cube (repellent treatment) placed into the middle of the dish. The Petri dish serves as the arena that is placed under a camera in a light box to record the honey bee locomotor activities using video tracking software. A total of 8 control and 8 repellent treatments were analyzed for a 10 min period with each treatment was duplicated with new honey bees. Here, we demonstrate that honey bees are deterred from the sugar-agarose cubes with a compound treatment whereas honey bees are attracted to the sugar-agarose cubes without an added compound.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.