Abstract

Video texture synthesis is the process of providing a continuous and infinitely varying stream of frames, which plays an important role in computer vision and graphics. However, it still remains a challenging problem to generate high-quality synthesis results. Considering the two key factors that affect the synthesis performance, frame representation and blending artifacts, we improve the synthesis performance from two aspects: 1) Effective frame representation is designed to capture both the image appearance information in spatial domain and the longitudinal information in temporal domain. 2) Artifacts that degrade the synthesis quality are significantly suppressed on the basis of a diffeomorphic growth model. The proposed video texture synthesis approach has two major stages: video stitching stage and transition smoothing stage. In the first stage, a video texture synthesis model is proposed to generate an infinite video flow. To find similar frames for stitching video clips, we present a new spatial-temporal descriptor to provide an effective representation for different types of dynamic textures. In the second stage, a smoothing method is proposed to improve synthesis quality, especially in the aspect of temporal continuity. It aims to establish a diffeomorphic growth model to emulate local dynamics around stitched frames. The proposed approach is thoroughly tested on public databases and videos from the Internet, and is evaluated in both qualitative and quantitative ways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.