Abstract
Video summarization plays an important role in too many fields, such as video indexing, video browsing, video compression, video analyzing and so on. One of the fundamental units in the video structure analysis is the keyframe extraction, Keyframe provides meaningful frames from the video. The keyframe consists of the meaningful frame from the videos which help for video summarization. In this proposed model, we presented an approach that is based on Convolutional Neural Network, keyframe extraction from videos and static video summarization. First, the video should be converted to frames. Then we perform redundancy elimination techniques to reduce the redundancy from frames. Then extract the keyframes from video by using the Convolutional Neural Network(CNN) model. From the extracted keyframe, we form a video summarization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Recent Technology and Engineering (IJRTE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.