Abstract

This paper presents a video summarization technique for an Internet video to provide a quick way to overview its content. This is a challenging problem because finding important or informative parts of the original video requires to understand its content. Furthermore the content of Internet videos is very diverse, ranging from home videos to documentaries, which makes video summarization much more tough as prior knowledge is almost not available. To tackle this problem, we propose to use deep video features that can encode various levels of content semantics, including objects, actions, and scenes, improving the efficiency of standard video summarization techniques. For this, we design a deep neural network that maps videos as well as descriptions to a common semantic space and jointly trained it with associated pairs of videos and descriptions. To generate a video summary, we extract the deep features from each segment of the original video and apply a clustering-based summarization technique to them. We evaluate our video summaries using the SumMe dataset as well as baseline approaches. The results demonstrated the advantages of incorporating our deep semantic features in a video summarization technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.