Abstract

Many algorithms have been proposed for detecting video shot boundaries and classifying shot and shot transition types. This paper presents a novel approach to processing encoded video sequences prior to complete decoding. Detection of gradual transition and the elimination of disturbances caused by illumination change or fast object and camera motion are the major challenges to the current shot boundary detection techniques. These disturbances are often mistaken as shot boundaries. Therefore, it is a challenging task to develop a method that is not only insensitive to various disturbances but also sensitive enough to capture a shot change. To address these challenges, we propose an algorithm for shot boundary detection in the presence of illumination change, fast object motion, and fast camera motion. This is important for accurate and robust detection of shot boundaries and in turn critical for high-level content based analysis of video. First, the propose algorithm extracts structure features from each video frame by using dual-tree complex wavelet transform. Then, spatial domain structure similarity is computed between adjacent frames. The declaration of shot boundaries are decided based on carefully chosen thresholds. Experimental study is performed on a number of videos that include significant illumination change and fast motion of camera and objects. The performance comparison of the proposed algorithm with other existing techniques validates its effectiveness in terms of better Recall & Precision.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call