Abstract

Unsupervised video object segmentation is a challenging problem because it involves a large amount of data and object appearance may significantly change over time. In this paper, we propose a bottom-up approach for the combination of object segmentation and motion segmentation using a novel graphical model, which is formulated as inference in a conditional random field (CRF) model. This model combines object labeling and trajectory clustering in a unified probabilistic framework. The CRF contains binary variables representing the class labels of image pixels as well as binary variables indicating the correctness of trajectory clustering, which integrates dense local interaction and sparse global constraint. An optimization scheme based on a coordinate ascent style procedure is proposed to solve the inference problem. We evaluate our proposed framework by comparing it to other video and motion segmentation algorithms. Our method achieves improved performance on state-of-the-art benchmark datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.