Abstract

The purpose of video segmentation is to segment video sequence into shots where each shot represents a sequence of frames having the same contents, and then select key frames from each shot for indexing. Existing video segmentation methods can be classified into two groups: the shot change detection (SCD) approach for which thresholds have to be pre-assigned, and the clustering approach for which a prior knowledge of the number of clusters is required. In this paper, we propose a video segmentation method using a histogram-based fuzzy c-means (HBFCM) clustering algorithm. This algorithm is a hybrid of the two approaches aforementioned, and is designed to overcome the drawbacks of both approaches. The HBFCM clustering algorithm is composed of three phases: the feature extraction phase, the clustering phase, and the key-frame selection phase. In the first phase, differences between color histogram are extracted as features. In the second phase, the fuzzy c-means (FCM) is used to group features into three clusters: the shot change (SC) cluster, the suspected shot change (SSC) cluster, and the no shot change (NSC) cluster. In the last phase, shot change frames are identified from the SC and the SSC, and then used to segment video sequences into shots. Finally, key frames are selected from each shot. Simulation results indicate that the HBFCM clustering algorithm is robust and applicable to various types of video sequences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call