Abstract

Hyperspectral (HS) imaging provides rich spatial and spectral information and extends image inspection beyond human perception. Existing approaches, however, suffer from several drawbacks such as low sensitivity, resolution and/or frame rate, which confines HS cameras to scientific laboratories. Here we develop a video-rate HS camera capable of collecting spectral information on real-world scenes with sensitivities and spatial resolutions comparable with those of a typical RGB camera. Our camera uses compressive sensing, whereby spatial–spectral encoding is achieved with an array of 64 complementary metal–oxide–semiconductor (CMOS)-compatible Fabry–Pérot filters placed onto a monochromatic image sensor. The array affords high optical transmission while minimizing the reconstruction error in subsequent iterative image reconstruction. The experimentally measured sensitivity of 45% for visible light, the spatial resolution of 3 px for 3 dB contrast, and the frame rate of 32.3 fps at VGA resolution meet the requirements for practical use. For further acceleration, we show that AI-based image reconstruction affords operation at 34.4 fps and full high-definition resolution. By enabling practical sensitivity, resolution and frame rate together with compact size and data compression, our HS camera holds great promise for the adoption of HS technology in real-world scenarios, including consumer applications such as smartphones and drones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.