Abstract

This paper addresses the problem of choosing the best streaming policy for distortion optimal multipath video delivery, under network bandwidth and playback delay constraints. The streaming policy consists in a joint selection of the network path and of the video packets to be transmitted, along with their sending time. A simple streaming model is introduced, which takes into account the video packet importance, and the dependencies between packets. A careful timing analysis allows to compute the quality perceived by the receiver for a constrained playback delay, as a function of the streaming policy. We derive an optimization problem based on a video abstraction model, under the assumption that the server knows, or can predict accurately the state of the network. A detailed analysis of constrained multipath streaming systems provides helpful insights to design an efficient branch and bound algorithm that finds the optimal streaming strategy. This solution allows to bound the performance of any scheduling strategy, but the complexity of the algorithm becomes rapidly intractable. We therefore propose a fast heuristic-based algorithm, built on load-balancing principles. It allows to reach close to optimal performance with a polynomial time complexity. The algorithm is then adapted to live streaming scenarios, where the server has only a partial knowledge of the packet stream, and the channel bandwidth. Extensive simulations show that the proposed algorithm only induces a negligible distortion penalty compared to the optimal strategy, even when the optimization horizon is limited, or the rate estimation is not perfect. Simulation results also demonstrate that the proposed scheduling solution performs better than common scheduling algorithms, and therefore represents a very efficient low-complexity multipath streaming algorithm, for both stored and live video services

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.