Abstract

We present an approach for unsupervised object segmentation in unconstrained videos. Driven by the latest progress in this field, we argue that segmentation performance can be largely improved by aggregating the results generated by state-of-the-art algorithms. Initially, objects in individual frames are estimated through a per-frame aggregation procedure using majority voting. While this can predict relatively accurate object location, the initial estimation fails to cover the parts that are wrongly labeled by more than half of the algorithms. To address this, we build a holistic appearance model using non-local appearance cues by linear regression. Then, we integrate the appearance priors and spatio-temporal information into an energy minimization framework to refine the initial estimation. We evaluate our method on challenging benchmark videos and demonstrate that it outperforms state-of-the-art algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.