Abstract

Shoreline processes observed by a video monitoring system were investigated under different wave conditions. A 30 m-high tower equipped with video cameras was constructed in Hujeong Beach, South Korea, where coastal erosion was suspected to occur. Two-year shoreline data since December 2016 showed that beach area, Ab, has decreased, but periods of rapid increase in Ab were also observed. Shoreline change was closely related to the wave propagation directions and bottom topography. Ab increased when waves approached the shore obliquely, whereas it decreased when they approached in a normal direction. The shoreline became undulated when Ab increased, while it became flatter when Ab decreased. The undulation process was influenced by nearshore bedforms because the shoreline protruded in the lee area where underwater rocks or nearshore sandbars actively developed, with a sheltering effect on waves. Specifically, the locations of shoreline accretion corresponded to the locations where the sandbar horns (location where a crescentic sandbar protrudes toward the shore) developed, confirming the out-of-phase coupling between sandbars and shoreline. When waves with higher energy approached normal to the shore, the sheltering effect of sandbars and underwater rocks became weaker and offshore sediment transport occurred uniformly along the coast, resulting in flatter shorelines.

Highlights

  • Coastal erosion is a serious problem that may cause economic and environmental damage to the coastal communities

  • 40 video monitoring systems have been employed in the beaches along the coasts of South Korea to calculate the seasonal and annual variation of beach areas, and these data have been used to develop coastal management plans

  • A rose diagram that shows the distribution of the propagating wave heights, Hw, and directions, Dw, is drawn to support the understanding of the shoreline evolution pattern

Read more

Summary

Introduction

Coastal erosion is a serious problem that may cause economic and environmental damage to the coastal communities. For proper protection of coastal environments, a systematic management of the coastal zones must be implemented by the government together with local communities. Such management strategies should be built based on scientific information, which provides proper tools to understand the status of the coasts, and accurate monitoring of the on-going coastal processes, which is required to produce long-term data. Sci. 2019, 9, 4984 detect shoreline positions [2,3] as a tool for coastal zone management [4]. 40 video monitoring systems have been employed in the beaches along the coasts of South Korea to calculate the seasonal and annual variation of beach areas, and these data have been used to develop coastal management plans

Objectives
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.