Abstract

In this paper, we propose a new video inpainting method which applies to both static or free-moving camera videos. The method can be used for object removal, error concealment, and background reconstruction applications. To limit the computational time, a frame is inpainted by considering a small number of neighboring pictures which are grouped into a group of pictures (GoP). More specifically, to inpaint a frame, the method starts by aligning all the frames of the GoP. This is achieved by a region-based homography computation method which allows us to strengthen the spatial consistency of aligned frames. Then, from the stack of aligned frames, an energy function based on both spatial and temporal coherency terms is globally minimized. This energy function is efficient enough to provide high quality results even when the number of pictures in the GoP is rather small, e.g. 20 neighboring frames. This drastically reduces the algorithm complexity and makes the approach well suited for near real-time video editing applications as well as for loss concealment applications. Experiments with several challenging video sequences show that the proposed method provides visually pleasing results for object removal, error concealment, and background reconstruction context.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call