Abstract

Hand gestures are a well-known and intuitive method of human-computer interaction. The majority of the research has concentrated on hand gesture recognition from the RGB images, however, little work has been done on recognition from videos. In addition, RGB cameras are not robust in varying lighting conditions. Motivated by this, we present the video based hand gestures recognition using the depth camera and a light weight convolutional neural network (CNN) model. We constructed a dataset and then used a light weight CNN model to detect and classify hand movements efficiently. We also examined the classification accuracy with a limited number of frames in a video gesture. We compare the depth camera’s video gesture recognition performance to that of the RGB camera. We evaluate the proposed model’s performance on edge computing devices and compare to benchmark models in terms of accuracy and inference time. The proposed model results in an accuracy of 99.48% on the RGB version of test dataset and 99.18% on the depth version of test dataset. Finally, we compare the accuracy of the proposed light weight CNN model with the state-of-the hand gesture classification models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.