Abstract
AbstractIn this paper, we develop an example-based event retrieval method which constructs a model for retrieving events of interest in a video archive, by using examples provided by a user. But, this is challenging because shots of an event are characterized by significantly different features, due to camera techniques, settings and so on. That is, the video archive contains a large variety of shots of the event, while the user can only provide a small number of examples. Considering this, we use “rough set theory” to capture various characteristics of the event. Specifically, by using rough set theory, we can extract classification rules which can correctly identify different subsets of positive examples. Furthermore, in order to extract a larger variety of classification rules, we incorporate “bagging” and “random subspace method” into rough set theory. Here, we define indiscernibility relations among examples based on outputs of classifiers, built on different subsets of examples and different subsets of feature dimensions. Experimental results on TRECVID 2009 video data validate the effectiveness of our example-based event retrieval method.KeywordsExample-based event retrievalRough set theoryBaggingRandom subspace methodhigh-dimensional small sample size problem
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.