Abstract

Table olives (Olea europaea) traditionally are hand harvested when green in color and before physiological maturity is attained. Hand harvesting accounts for the grower's main production costs. Several mechanical harvesting methods have been previously tested. However, tree configuration and fruit injury are major constraints to the adoption of mechanical harvesting. In prior work with a canopy shaker, promising results were attained after critical machine components were reconfigured. In this study, stereo video analysis based on two high-speed cameras operating during the harvesting process were used to identify the sources of fruit damage due to canopy-harvester interaction. Damage was subjectively evaluated after harvest. Fruit mechanically harvested had 35% more bruising and three times as many fruit with broken skin as that of hand-harvested fruit. The main source of fruit damaged in the canopy was the strike-impact of fruit by harvester rods. Implementation of softer padding materials were effective in mitigating fruit injury caused by the impact of rods and hard surfaces. Canopy acceleration was correlated with fruit damage, thus restricting improvements needed for fruit removal efficiency through increased tine frequency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call