Abstract
Error concealment has long been identified as the last line of defense against transmission errors. Since error handling is outside the scope of video coding standards, decoders may choose to simply ignore corrupted packets or attempt to decode their content. In this paper, we present a novel joint source-channel decoding approach that can be applied to received video packets containing transmission errors. Soft-output information is combined with our novel syntax-element-level maximum likelihood decoding framework to effectively extract valid macroblocks from corrupted H.264 slices. Simulation results show that our video error correction strategy provides an average peak signal-to-noise ratio (PSNR) improvement near 2 dB compared to the error concealment approach used by the H.264 reference software, as well as an average PSNR improvement of 0.8 dB compared to state-of-the-art error concealment. The proposed method is also applicable when only hard-information is available, in which case it performs better than state-of-the-art error concealment especially in high error conditions. Finally, in our simulations, the proposed method increased the decoder computational complexity by only 5% to 20%, making it applicable for real-time applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems for Video Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.