Abstract

We propose a powerful video denoising algorithm that exploits temporal and spatial redundancy characterizing natural video sequences. The algorithm implements the paradigm of nonlocal grouping and collaborative filtering, where a higher-dimensional transform-domain representation is leveraged to enforce sparsity and thus regularize the data. The proposed algorithm exploits the mutual similarity between 3-D spatiotemporal volumes constructed by tracking blocks along trajectories defined by the motion vectors. Mutually similar volumes are grouped together by stacking them along an additional fourth dimension, thus producing a 4-D structure, termed group, where different types of data correlation exist along the different dimensions: local correlation along the two dimensions of the blocks, temporal correlation along the motion trajectories, and nonlocal spatial correlation (i.e. self-similarity) along the fourth dimension. Collaborative filtering is realized by transforming each group through a decorrelating 4-D separable transform and then by shrinkage and inverse transformation. In this way, collaborative filtering provides estimates for each volume stacked in the group, which are then returned and adaptively aggregated to their original position in the video. Experimental results demonstrate the effectiveness of the proposed procedure which outperforms the state of the art.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.