Abstract

This paper presents a video deblurring algorithm utilizing the high resolution information of adjacent unblurred frames. First, two motion-compensated predictors of a blurred frame are derived from its neighboring unblurred frames via bidirectional motion compensation. Then, an accurate blur kernel, which is difficult to directly obtain from the blurred frame itself, is computed between the predictors and the blurred frame. Next, a residual deconvolution is employed to reduce the ringing artifacts inherently caused by conventional deconvolution. The blur kernel estimation and deconvolution processes are iteratively performed for the deblurred frame. Experimental results show that the proposed algorithm provides sharper details and smaller artifacts than the state-of-the-art algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.