Abstract
Content-based video hashing was proposed for the purpose of video copy detection. Conventional video copy detection algorithms apply image hashing algorithm to either every frame or key frame which is sensitive to video variation. In our proposed algorithm, key frames including temporal and spatial information are used to video copy detection, Discrete cosine transform (DCT) is done for video key frame and feature vector is extracted by principal component analysis ( PCA ). An average true positive rate of 99.31% and false positive rate of 0.37% demonstrate the robustness and uniqueness of the proposed algorithm. Experiments indicate that it is easy to implement and more efficient than other video copy detection algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.