Abstract
In this paper, we present a novel scheme on video content representation by exploring the spatio-temporal information. A pseudo-object-based shot representation containing more semantics is proposed to measure shot similarity and force competition approach is proposed to group shots into scene based on content coherences between shots. Two content descriptors, color objects: Dominant Color Histograms (DCH) and Spatial Structure Histograms (SSH), are introduced. To represent temporal content variations, a shot can be segmented into several subshots that are of coherent content, and shot similarity measure is formulated as subshot similarity measure that serves to shot retrieval. With this shot representation, scene structure can be extracted by analyzing the splitting and merging force competitions at each shot boundary. Experimental results on real-world sports video prove that our proposed approach for video shot retrievals achieve the best performance on the average recall (AR) and average normalized modified retrieval rank (ANMRR), and Experiment on MPEG-7 test videos achieves promising results by the proposed scene extraction algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.