Abstract
In this paper, we explore a distributed collaborative caching and computing model to support the distribution of adaptive bit rate video streaming. The aim is to reduce the average initial buffer delay and improve the quality of user experience. Considering the difference between global and local video popularities and the time-varying characteristics of video popularity, a two-stage caching scheme is proposed to push popular videos closer to users and minimize the average initial buffer delay. Based on both long-term content popularity and short-term content popularity, the proposed caching solution is decouple into the proactive cache stage and the cache update stage. In the proactive cache stage, we develop a proactive cache placement algorithm that can be executed in an off-peak period. In the cache update stage, we propose a reactive cache update algorithm to update the existing cache policy to minimize the buffer delay. Simulation results verify that the proposed caching algorithms can reduce the initial buffer delay efficiently.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.