Abstract
This paper presents an extended Markov chain Monte Carlo (MCMC) method for tracking and an extended hidden Markov model (HMM) method for learning/recognizing multiple moving objects in videos with jittering backgrounds. A graphical user interface (GUI) with enhanced usability is also proposed. Previous MCMC and HMM-based methods are known to suffer performance impairments, degraded tracking and recognition accuracy, and higher computation costs when challenged with appearance and trajectory changes such as occlusion, interaction, and varying numbers of moving objects. This paper proposes a cost reduction method for the MCMC approach by taking moves, i.e., birth and death, out of the iteration loop of the Markov chain when different moving objects interact. For stable and robust tracking, an ellipse model with stochastic model parameters is used. Moreover, our HMM method integrates several different modules in order to cope with multiple discontinuous trajectories. The GUI proposed herein offers an auto-allocation module of symbols from images and a hand-drawing module for efficient trajectory learning and for interest trajectory addition. Experiments demonstrate the advantages of our method and GUI in tracking, learning, and recognizing spatiotemporal smooth and discontinuous trajectories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems for Video Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.