Abstract

One of the fascinating aspects of sports rivalry is that anything can happen. The significant difficulty is that computer-aided systems must address how to record and analyze many game events, and fractal AI plays an essential role in dealing with complex structures, allowing effective solutions. In table tennis, we primarily concentrate on two issues: ball tracking and trajectory prediction. Based on these two components, we can get ball parameters such as velocity and spin, perform data analysis, and even create a ping-pong robot application based on fractals. However, most existing systems rely on a traditional method based on physical analysis and a non-machine learning tracking algorithm, which can be complex and inflexible. As mentioned earlier, to overcome the problem, we proposed an automatic table tennis-aided system based on fractal AI that allows solving complex issues and high structural complexity of object tracking and trajectory prediction. For object tracking, our proposed algorithm is based on structured output Convolutional Neural Network (CNN) based on deep learning approaches and a trajectory prediction model based on Long Short-Term Memory (LSTM) and Mixture Density Networks (MDN). These models are intuitive and straightforward and can be optimized by training iteratively on a large amount of data. Moreover, we construct a table tennis auxiliary system based on these models currently in practice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call