Abstract
Surgeons' skill in the operating room is a major determinant of patient outcomes. Assessment of surgeons' skill is necessary to improve patient outcomes and quality of care through surgical training and coaching. Methods for video-based assessment of surgical skill can provide objective and efficient tools for surgeons. Our work introduces a new method based on attention mechanisms and provides a comprehensive comparative analysis of state-of-the-art methods for video-based assessment of surgical skill in the operating room. Using a dataset of 99 videos of capsulorhexis, a critical step in cataract surgery, we evaluated image feature-based methods and two deep learning methods to assess skill using RGB videos. In the first method, we predict instrument tips as keypoints and predict surgical skill using temporal convolutional neural networks. In the second method, we propose a frame-wise encoder (2D convolutional neural network) followed by a temporal model (recurrent neural network), both of which are augmented by visual attention mechanisms. We computed the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and predictive values through fivefold cross-validation. To classify a binary skill label (expert vs. novice), the range of AUC estimates was 0.49 (95% confidence interval; CI = 0.37 to 0.60) to 0.76 (95% CI = 0.66 to 0.85) for image feature-based methods. The sensitivity and specificity were consistently high for none of the methods. For the deep learning methods, the AUC was 0.79 (95% CI = 0.70 to 0.88) using keypoints alone, 0.78 (95% CI = 0.69 to 0.88) and 0.75 (95% CI = 0.65 to 0.85) with and without attention mechanisms, respectively. Deep learning methods are necessary for video-based assessment of surgical skill in the operating room. Attention mechanisms improved discrimination ability of the network. Our findings should be evaluated for external validity in other datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computer Assisted Radiology and Surgery
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.