Abstract

With increased use of robots, there is an inadequate understanding of minimally invasive modalities' time costs. This study evaluates the operative durations of robotic-assisted vs video-assisted lung lobectomies. To compare resource utilization, specifically operative time, between video-assisted and robotic-assisted thoracoscopic lung lobectomies. This retrospective cohort study evaluated patients aged 18 to 90 years who underwent minimally invasive (robotic-assisted or video-assisted) lung lobectomy from January 1, 2020, to December 31, 2022, with 90 days' follow-up after surgery. The study included multicenter electronic health record data from 21 hospitals within an integrated health care system in Northern California. Thoracic surgery was regionalized to 4 centers with 14 board-certified general thoracic surgeons. Robotic-assisted or video-assisted lung lobectomy. The primary outcome was operative duration (cut to close) in minutes. Secondary outcomes were length of stay, 30-day readmission, and 90-day mortality. Comparisons between video-assisted and robotic-assisted lobectomies were generated using the Wilcoxon rank sum test for continuous variables and the χ2 test for categorical variables. The average treatment effects were estimated with augmented inverse probability treatment weighting (AIPTW). Patient and surgeon covariates were adjusted for and included patient demographics, comorbidities, and case complexity (age, sex, race and ethnicity, neighborhood deprivation index, body mass index, Charlson Comorbidity Index score, nonelective hospitalizations, emergency department visits, a validated laboratory derangement score, a validated institutional comorbidity score, a surgeon-designated complexity indicator, and a procedural code count), and a primary surgeon-specific indicator. The study included 1088 patients (median age, 70.1 years [IQR, 63.3-75.8 years]; 704 [64.7%] female), of whom 446 (41.0%) underwent robotic-assisted and 642 (59.0%) underwent video-assisted lobectomy. The median unadjusted operative duration was 172.0 minutes (IQR, 128.0-226.0 minutes). After AIPTW, there was less than a 10% difference in all covariates between groups, and operative duration was a median 20.6 minutes (95% CI, 12.9-28.2 minutes; P < .001) longer for robotic-assisted compared with video-assisted lobectomies. There was no difference in adjusted secondary patient outcomes, specifically for length of stay (0.3 days; 95% CI, -0.3 to 0.8 days; P = .11) or risk of 30-day readmission (adjusted odds ratio, 1.29; 95% CI, 0.84-1.98; P = .13). The unadjusted 90-day mortality rate (1.3% [n = 14]) was too low for the AIPTW modeling process. In this cohort study, there was no difference in patient outcomes between modalities, but operative duration was longer in robotic-assisted compared with video-assisted lung lobectomy. Given that this elevated operative duration is additive when applied systematically, increased consideration of appropriate patient selection for robotic-assisted lung lobectomy is needed to improve resource utilization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call