Abstract

Video affective content analysis is a fascinating but seldom addressed field in entertainment computing research communities. To recognize affective content in video, a video affective content representation and recognition framework based on Video Affective Tree (VAT) and Hidden Markov Models (HMMs) was proposed. The proposed video affective content recognizer has good potential to recognize the basic emotional events of audience. However, due to Expectation-Maximization (EM) methods like the Baum-Welch algorithm tend to converge to the local optimum which is the closer to the starting values of the optimization procedure, the estimation of the recognizer parameters requires a more careful examination. A Genetic Algorithm combined HMM (GA-HMM) is presented here to address this problem. The idea is to combine a genetic algorithm to explore quickly the whole solution space with a Baum-Welch algorithm to find the exact parameter values of the optimum. The experimental results show that GA-HMM can achieve higher recognition rate with less computation compared with our previous works.KeywordsHide Markov ModelHide StateBasic EmotionViterbi AlgorithmObservation SequenceThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.