Abstract
For fashion outfits to be considered aesthetically pleasing, the garments that constitute them need to be compatible in terms of visual aspects, such as style, category and color. Previous works have defined visual compatibility as a binary classification task with items in a garment being considered as fully compatible or fully incompatible. However, this is not applicable to Outfit Maker applications where users create their own outfits and need to know which specific items may be incompatible with the rest of the outfit. To address this, we propose the Visual InCompatibility TransfORmer (VICTOR) that is optimized for two tasks: 1) overall compatibility as regression and 2) the detection of mismatching items and utilize fashion-specific contrastive language-image pre-training for fine tuning computer vision neural networks on fashion imagery. We build upon the Polyvore outfit benchmark to generate partially mismatching outfits, creating a new dataset termed Polyvore-MISFITs, that is used to train VICTOR. A series of ablation and comparative analyses show that the proposed architecture can compete and even surpass the current state-of-the-art on Polyvore datasets while reducing the instance-wise floating operations by 88%, striking a balance between high performance and efficiency. We release our code at https://github.com/stevejpapad/Visual-InCompatibility-Transformer
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Visual Communication and Image Representation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.