Abstract

The human capacity for vibrotactile frequency discrimination has been compared directly for glabrous and hairy skin regions by means of a two-alternative, forced-choice psychophysical procedure in five subjects. Sinusoidal vibratory stimuli, delivered by means of a 4-mm-diam probe, were first used to obtain detection threshold values for the two skin sites, the finger tip and the dorsal forearm, at four standard frequencies, 20, 50, 100, and 200 Hz. Values confirmed previous results showing detection thresholds were markedly higher on hairy skin than on glabrous skin. For the discrimination task, each standard frequency, at an amplitude four times detection threshold, was paired with a series of comparison frequencies, and discrimination capacity then was quantified by deriving from psychometric function curves, measures of the discriminable frequency increment (Deltaf) and the Weber Fraction (Deltaf/f), which, when plotted as a function of the four standard frequencies, revealed similar capacities for frequency discrimination at the two skin sites at the standard frequencies of 20, 100, and 200 Hz but an equivocal difference at 50 Hz. Cutaneous local anesthesia produced a marked impairment in vibrotactile detection and discrimination at the low standard frequencies of 20 and 50 Hz but little effect at higher frequencies. In summary, the results reveal, first, a striking similarity in vibrotactile discriminative performance in hairy and glabrous skin despite marked differences in detection thresholds for the two sites, and, second, the results confirm that vibrotactile detection and discrimination in hairy skin depend on superficial receptors at low frequencies but depend on deep, probably Pacinian corpuscle, receptors for high frequencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.