Abstract

An attempt is made to measure the vibron-phonon coupling strength in a finite size lattice of H-bonded peptide units. Within a finite temperature density matrix approach, we compare separately the influence of both the vibron-phonon coupling and the dipole-dipole interaction on the coherence between the ground state and a local one-vibron state. Due to the confinement, it is shown that the vibron-phonon coupling yields a series of dephasing-rephasing mechanisms that prevents the coherence to decay. Similarly, the dipole-dipole interaction gives rise to quantum recurrences for specific revival times. Nevertheless, intense recurrences are rather rare events so that the coherence behaves as a random variable whose most probable value vanishes. By comparing the degree of the coherence for each interaction, a critical coupling chi*(L) is defined to discriminate between the weak and the strong coupling limits. Its size dependence indicates that the smaller the lattice size is, the weaker the vibron-phonon coupling relative to the dipole-dipole interaction is.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call