Abstract

Vapor-state absorption spectra have been recorded for acetyl fluoride and acetyl chloride and also for deuterated derivatives with path lengths up to 40 m. The origins of the S1←S0 transitions have been derived, together with the torsional-vibration energy levels in the ground state S0 and excited singlet state S1. Fitting the calculated and observed rotational contours of the vibronic bands has been used to estimate the geometrical parameters in the S1 states. The carbonyl groups in the S1 states are nonplanar. The internal-rotation potentials have been determined for acetyl fluoride and acetyl chloride in the S1 and S0 states. The relative intensities of the torsional transitions in those states indicate that the minima in the potential energy are appreciably displaced along the torsional coordinate in the S0 and S1 states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.