Abstract

In this paper, we investigate the vibronic shape of the lowest UV-visible absorption band of biphenyl-like systems, using the bifluorene molecule as a workhorse. The molecule is here regarded as a one-dimensional two-level system, whose ground and excited states are simulated with time-dependent density functional theory and semiempirical methods. The vibrational Schrödinger equation is then numerically solved along the torsional coordinate, and the vibronic shape of the absorption band is modeled. Comparisons with the harmonic approximation, with or without the Franck-Condon approximation, are performed. This study confirms that a vibronic effect is most likely responsible for the strong dissymmetry of the lowest UV-visible absorption band of biphenyl-like systems and that, for such systems, the experimental data should be extracted using the whole absorption band, instead of a Gaussian fit on the first part of the band, as it is often done when a superposition between several electronic transitions is suspected.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call