Abstract

Singlet fission, the molecular process through which photons are effectively converted into pairs of lower energy triplet excitons, holds promise as a means of boosting photovoltaic device efficiencies. In the preceding article of this series, we formulated a vibronic theory of singlet fission, inspired by previous experimental and theoretical studies suggesting that vibronic coupling plays an important role in fission dynamics. Here, we extend our model in order to simulate two-dimensional electronic spectra, through which the theory is further validated based on a comparison to recent measurements on pentacene crystals. Moreover, by means of such spectral simulations, we provide new insights into the nature of the correlated triplet pair state, the first product intermediate in the fission process. In particular, we address a controversy in the literature regarding the identification, energies, and transition dipole moments of its optical transitions towards higher-lying triplet states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.