Abstract

Doubly resonant sum frequency generation (DR-SFG) serves as a potent characteristic technique for probing the electronic spectra and vibronic coupling of molecules on surfaces. In this study, we successfully developed a novel infrared (IR)-white light (WL) DR-SFG spectroscopy based on narrowband IR and tunable broadband WL. This novel method was employed to explore the excitation spectrum and vibronic couplings of sub-monolayer Rhodamine 6G molecules. Our findings elucidate that the xanthene skeleton vibrational modes exhibit strong coupling with the S0-S1 electronic transition. Notably, we observed not only the 0-0 transition of the S0-S1 electronic continuum but also the 0-1 transition, a first time observation in the realm of DR-SFG spectroscopy. This advanced DR-SFG spectroscopy methodology facilitates a more sensitive examination of electronic spectra and the coupling between electronic transitions and vibrational modes, heralding a significant advancement in the understanding of molecular interactions on surfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call