Abstract

The two-vibron dynamics associated to amide-I vibrations in a three-dimensional (3D) α-helix is described according to a generalized Davydov model. The helix is modeled by three spines of hydrogen-bonded peptide units linked via covalent bonds. It is shown that the two-vibron energy spectrum supports both a two-vibron free states continuum and two kinds of bound states, called two-vibron bound states (TVBS)-I and TVBS-II, connected to the trapping of two vibrons onto the same amide-I mode and onto two nearest-neighbor amide-I modes belonging to the same spine, respectively. At low temperature, nonvanishing interspine hopping constants yield a three-dimensional nature of both TVBS-I and TVBS-II which the wave functions extend over the three spines of the helix. At biological temperature, the pairs are confined in a given spine and exhibit the same features as the bound states described within a one-dimensional model. The interplay between the temperature and the 3D nature of the helix is also responsible for the occurrence of a third bound state called TVBS-III which refers to the trapping of two vibrons onto two different spines. The experimental signature of the existence of bound states is discussed through the simulation of their infrared pump-probe spectroscopic response. Finally, the fundamental question of the breather-like behavior of two-vibron bound states is addressed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.