Abstract

This article experimentally investigates thermal vibrational convection in horizontal layers, subject to circular translational oscillations in the horizontal plane. The definite direction of translational vibrations lacks investigation, and the case of a layer heated from above is considered. At large negative values of the gravitational Rayleigh number, the thermovibrational convection appears in a threshold manner with an increase in the vibration intensity. Our results show that in the case of strong gravitational stabilization, thermovibrational convection develops in the form of patterns with strong anisotropy of spatial periods in orthogonal directions. The vibroconvective patterns have the form of parallel rolls divided along their length into relatively short segments. The layer thickness determines the distance between the rolls, and the longitudinal wavelength, depends on the Rayleigh number. Convective cells are studied using the noninvasive thermohromic methodic. It is found that when using the tracers for flow visualization, the concentration and type of the visualizer particles have a serious impact on the shape of the observed vibroconvective structures. In particular, the presence of even a small number of tracers (used in the study of velocity fields by the PIV method) generates flows and intensifies the heat transfer below the threshold of thermovibrational convection excitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call