Abstract
Recognition of conserved bacterial components provides immediate and efficient immune responses and plays a critical role in triggering antigen-specific adaptive immunity. To date, most microbial components that are detected by host innate immune system are non-proteinaceous structural components. In order to identify novel bacterial immunostimulatory proteins, we developed a new high-throughput approach called “EPSIA”, Expressed Protein Screen for Immune Activators. Out of 3,882 Vibrio cholerae proteins, we identified phosphatidylserine decarboxylase (PSD) as a conserved bacterial protein capable of activating host innate immunity. PSD in concentrations as low as 100 ng/ml stimulated RAW264.7 murine macrophage cells and primary peritoneal macrophage cells to secrete TNFα and IL-6, respectively. PSD-induced proinflammatory response was dependent on the presence of MyD88, a known adaptor molecule for innate immune response. An enzymatically inactive PSD mutant and heat-inactivated PSD induced ∼40% and ∼15% of IL-6 production compared to that by native PSD, respectively. This suggests that PSD induces the production of IL-6, in part, via its enzymatic activity. Subsequent receptor screening determined TLR4 as a receptor mediating the PSD-induced proinflammatory response. Moreover, no detectable IL-6 was produced in TLR4-deficient mouse macrophages by PSD. PSD also exhibited a strong adjuvant activity against a co-administered antigen, BSA. Anti-BSA response was decreased in TLR4-deficient mice immunized with BSA in combination with PSD, further proving the role of TLR4 in PSD signaling in vivo. Taken together, these results provide evidence for the identification of V. cholerae PSD as a novel TLR4 agonist and further demonstrate the potential application of PSD as a vaccine adjuvant.
Highlights
Innate and adaptive immunity are two arms of the immune system that help defend against invading microbes [1,2]
We show that V. cholerae phosphatidylserine decarboxylase is capable of stimulating innate immune effector cells to secrete proinflammatory cytokines, a hallmark of the innate immune response
phosphatidylserine decarboxylase (PSD) was identified in a high-throughout Expressed Protein Screen for Immune Activators (EPSIA)
Summary
Innate and adaptive immunity are two arms of the immune system that help defend against invading microbes [1,2]. Innate immunity provides immediate defense against infection in a non-specific manner and influences the antigen-specific adaptive immune response [3,4]. The innate response to microbes involves the recognition of conserved microbial products, collectively termed pathogen-associated molecular patterns (PAMPs) by specific host receptors [2]. When TLRs that are either surface-exposed or located in the endosomal membrane bind PAMPs, signal transduction events are activated leading to proinflammatory cytokine production [1]. The proinflammatory response induced by TLR activation can lead to active clearance of pathogens and an enhancement of the adaptive immune response
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.