Abstract

H-NS is an abundant nucleoid-associated protein involved in the maintenance of chromosomal architecture in bacteria. H-NS also has a role in silencing the expression of a variety of environmentally regulated genes during growth under nonpermissive conditions. In this study we demonstrate a role for H-NS in the negative modulation of expression of several genes within the ToxR virulence regulon of Vibrio cholerae. Deletion of hns resulted in high, nearly constitutive levels of expression of the genes encoding cholera toxin, toxin-coregulated pilus, and the ToxT virulence gene regulatory protein. For the cholera toxin- and ToxT-encoding genes, elevated expression in an hns mutant was found to occur in the absence of the cognate activator proteins, suggesting that H-NS functions directly at these promoters to decrease gene expression. Deletion analysis of the region upstream of toxT suggests that an extensive region located far upstream of the transcriptional start site is required for complete H-NS-mediated repression of gene expression. These data indicate that H-NS negatively influences multiple levels of gene expression within the V. cholerae virulence cascade and raise the possibility that the transcriptional activator proteins in the ToxR regulon function to counteract the repressive effects of H-NS at the various promoters as well as to recruit RNA polymerase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.