Abstract

Tympanal hearing organs in the front tibiae of ensiferan insects supposedly evolved from vibration-sensitive tibial organs (TO), like those in the cave cricket Troglophilus neglectus (Rhaphidophoridae). If this is true, one expects to find interneurons in the cave cricket that are homologous to auditory neurons from hearing Ensifera. Therefore, we examined the central projections of the foreleg TO of the cave cricket, as well as morphology and response properties of interneurons responding to foreleg vibration. Sensory axons of the TO adjoined to the “tympanal nerve” terminate in the equivalent portion of the ring tract neuropile in the prothoracic ganglion as corresponding receptors of crickets and weta. We found nine putatively homologous elements to sound- and/or vibration-sensitive interneurons of Ensifera – one local neuron (unpaired median, DUM), three T-fibres (TN), three descending (DN) and two ascending neurons (AN). Presumable first-order interneurons arborising in the ring tract correspond to a local auditory DUM cell of bush crickets and to TN1, DN1 and AN2 of various Ensifera, respectively. Homologues of some prominent auditory cells, the “omega” neuron(s) and the ascending neuron 1 (AN1), however, were not found. We conclude that (a) T. neglectus interneurons are morphologically primitive with respect to those of hearing taxa, (b) significant changes in the dendritic structure/synaptic connectivity have taken place during the evolution of the most specialised first-order auditory interneurons of Ensifera, (c) the data do not contradict independent evolution of hearing in Grylloidea and Tettigonoidea. Other interneurons appear morpho-physiologically conserved across hearing and non-hearing species, possibly as a part of a multimodal “alert” system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call