Abstract

We examine the mechanisms of interaction between the deformations of the two identical halves of ethane-like molecules in degenerate vibrational states, in order to determine the most convenient symmetries of the degenerate vibrational wavefunctions, in the molecular symmetry group G 36( EM). In moderate barrier molecules this is related to the problem of the vibration-torsion symmetry labeling of the tunneling split components, in the order of increasing energies, in given rotational states. Numerical calculations have been performed as a guide to explore several different situations. It has been proved that the torsional splittings in degenerate vibrational states of molecules with a moderate barrier depend dramatically on the value of the γ-Coriolis coefficient and, unlike the splittings in nondegenerate vibrational states, are not determined only by the effective torsional potential function. Theory and numerical predictions support the experimental result that all normal modes of ethane behave as E 1 d , E 2 d pairs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call