Abstract
Fundamental natural frequencies of rotating functionally graded cylindrical shells have been calculated through the improved wave propagation approach using three different volume fraction laws. The governing shell equations are obtained from Love’s shell approximations using improved rotating terms and the new equations are obtained in standard eigenvalue problem with wave propagation approach and volume fraction laws. The effects of circumferential wave number, rotating speed, length-to-radius, and thickness-to-radius ratios have been computed with various combinations of axial wave numbers and volume fraction law exponent on the fundamental natural frequencies of nonrotating and rotating functionally graded cylindrical shells using wave propagation approach and volume fraction laws with simply supported edge. In this work, variation of material properties of functionally graded materials is controlled by three volume fraction laws. This process creates a variation in the results of shell frequency. MATLAB programming has been used to determine shell frequencies for traveling mode (backward and forward) rotating motions. New estimations show that the rotating forward and backward simply supported fundamental natural frequencies increases with an increase in circumferential wave number, for Type I and Type II of functionally graded cylindrical shells. The presented results of backward and forward simply supported fundamental natural frequencies corresponding to Law I are higher than Laws II and III for Type I and reverse effects are found for Type II, depending on rotating speed. Our investigations show that the decreasing and increasing behaviors are noted for rotating simply supported fundamental natural frequencies with increasing length-to-radius and thickness-to-radius ratios, respectively. It is found that the fundamental frequencies of the forward waves decrease with the increase in the rotating speed, and the fundamental frequencies of the backward waves increase with the increase in the rotating speed. This investigation has been made with three different volume fraction laws of polynomial (Law I), exponential (Law II), and trigonometric (Law III). The presented numerical results of nonrotating isotropic and rotating functionally graded simply supported are in fair agreement with parts of other earlier numerical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.