Abstract

Supersonic jet-isolated porphycene has been studied using the techniques of laser-induced fluorescence excitation, single vibronic level fluorescence, and spectral hole burning, combined with quantum mechanical calculations of geometry and vibrational structure of the ground and lowest electronically excited singlet states. Porphycene is a model for coherent double hydrogen tunneling in a symmetrical double well potential, as evidenced by tunneling splittings observed in electronic absorption and emission. The results led to reliable assignment of low frequency modes in S0 and S1 electronic states. The values of tunneling splitting were determined for ground state vibrational levels. In the case of tautomerization-promoting 2A(g) mode, tunneling splitting values significantly increase with the vibrational quantum number. Mode coupling was demonstrated by different values of tunneling splitting obtained for coexcitation of two or more vibrations. Finally, alternation of relative intensity patterns for the components of 2A(g) tunneling doublet observed for excitation and emission into different vibrational levels suggests that the energy order of levels corresponding to (+) and (-) combinations of nuclear wave functions is different for even and odd vibrational quantum numbers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.