Abstract
Free vibrations of a double-walled carbon nanotube (DWNT) are studied. The inner and outer carbon nanotubes are modeled as two individual elastic beams interacting each other by van der Waals forces. An original method is proposed to calculate the first seven order resonant frequencies and relative vibrational modes. Detailed results are demonstrated for DWNTs according to the different boundary conditions between inner and outer tubes, such as fixed-free, cantilever-free, fixed-simple and fixed-fixed (reduced form) supported ends. Our results indicate that there is a special invariable frequency for a DWNT that is not affected by different combinations of boundary conditions. All vibrational modes of the DWNT must be coaxial when the resonant frequency is smaller than this frequency. Some noncoaxial vibrations will occur when their resonant frequencies exceed the frequency. Especially, the first noncoaxial resonant frequency is still invariable for all different boundary conditions. A change of resonant frequency for various lengths of DWNTs is discussed in detail. In addition, our model predicts a new coaxial-noncoaxial vibrational mode in fixed-simple supports for inner and outer tubes of a DWNT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.