Abstract

Based on the Reissner-Naghdi’s thin shell theory, this paper concentrates on the free vibration of a joined cylindrical-spherical shell with elastic-support boundary conditions by a domain decomposition method. The joined shell is first separated from the elastic-support boundary and then subdivided into some cylindrical and spherical shell segments along the axis of revolution. The elastic-support boundary is regarded as a combination of distributed linear springs and can be treated as a special interface as well as the interface between two adjacent shell segments. Through the variational operation of the whole energy functional, the discretized equations of motion are derived by the expansions of the displacement field for each shell segment with Fourier series and Chebyshev orthogonal polynomials in the circumferential and longitudinal direction, respectively. To analyze the numerical convergence and precision of the present method, a number of case studies have been conducted and the solutions are compared with those derived by ANSYS and those presented in the previous literature to confirm the reliability and accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call