Abstract

We numerically study the vibrations of jammed packings of particles interacting with finite-range, repulsive potentials at zero temperature. As the packing fraction phi is lowered towards the onset of unjamming at phi(c), the density of vibrational states approaches a nonzero value in the limit of zero frequency. For phi >phi(c), there is a crossover frequency, omega* below which the density of states drops towards zero. This crossover frequency obeys power-law scaling with phi-phi(c). Characteristic length scales, determined from the dominant wave vector contributing to the eigenmode at omega*, diverge as power laws at the unjamming transition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.