Abstract
The most significant steps in vibration-based structural health monitoring (SHM) are to extract reliable damage sensitive features from the responses of structure and to make a decision about the safety and serviceability of the structure using the extracted features. However, in most real-world applications, adverse influences caused by multiple sources of environmental variability conditions such as traffic loading, wind, and, most importantly, temperature variations can mask extracted features and may lead to false positive and/or false negative indications of structural damage. Hence, it is thus fundamentally significant to understand the relationship between extracted features and environmental variations and to investigate the effects of these variations on the damage-related features and damage detection procedure. This article proposes a new hybrid unsupervised machine learning technique for early damage detection of bridge structures, which are always exposed to environmental variability conditions. The proposed method is based on a data dependent dissimilarity measure with the focus on effectively investigating and accurately suppressing the effects of environmental variability conditions from extracted features. The main merit of this method is to enable a machine learning technique to highly reduce the variations caused by environmental factors and increase damage detectability in an unsupervised manner. At last, the effectiveness and robustness of the proposed approach are assessed and verified through the well-known Tianjin-Yonghe Bridge; additionally, the proposed unsupervised machine learning methodology succeeds in early detecting damage under variability of environmental conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.